Ephemeroptera, Plecoptera, Megaloptera, and Trichoptera of Great Smoky Mountains National Park

Charles R. Parker 1,*, Oliver S. Flint, Jr. 2, Luke M. Jacobus 3, Boris C. Kondratieff 4, W. Patrick McCafferty 3, and John C. Morse 5

Abstract - Great Smoky Mountains National Park (GSMNP), situated on the mountainous border of North Carolina and Tennessee, is recognized as one of the most highly diverse protected areas in the temperate region. In order to provide baseline data for the scientific management of GSMNP, an All Taxa Biodiversity Inventory (ATBI) was initiated in 1998. Among the goals of the ATBI are to discover the identity and distribution of as many as possible of the species of life that occur in GSMNP. The authors have concentrated on the orders of completely aquatic insects other than odonates. We examined or utilized others' records of more than 53,600 adult and 78,000 immature insects from 545 locations. At present, 469 species are known from GSMNP, including 120 species of Ephemeroptera (mayflies), 111 species of Plecoptera (stoneflies), 7 species of Megaloptera (dobsonflies, fishflies, and alderflies), and 231 species of Trichoptera (caddisflies). Included in this total are 10 species new to science discovered since the ATBI began.

Introduction

Great Smoky Mountains National Park (GSMNP) is situated on the border of North Carolina and Tennessee and is comprised of 221,000 ha. GSMNP is recognized as one of the most diverse protected areas in the temperate region (Nichols and Langdon 2007). GSMNP contains more than 3400 km of streams (Parker and Pipes 1990). Virtually all of these streams originate within the Park (Fig. 1), arising as springs fed by groundwater from the higher elevations and ultimately derived from abundant rainfall. Very few kilometers of some low-elevation streams flow into GSMNP from outside its boundaries. This circumstance results in the waters of GSMNP being of high quality, with little or no direct industrial, commercial, or residential inputs to the system. This is offset to an uncertain, but probably significant, extent by the extremely high levels of atmospheric pollutants that the Park receives (Shaver et al. 1994, Smoot et al. 2000). In addition, much of the south side of GSMNP borders Fontana Lake, a large Tennessee

1US Geological Survey, Great Smokies Field Station, 1314 Cherokee Orchard Road, Gatlinburg, TN 37738. 2Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012. 3Department of Entomology, Purdue University, West Lafayette, IN 47904. 4Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523. 5Department of Entomology, Clemson University, Clemson, SC 29634. *Corresponding author - chuck_parker@usgs.gov.
Valley Authority reservoir. The southern Appalachian mountains, among the oldest in the world, were never glaciated (Flint 1971), which, when combined with rugged topography, abundant rainfall, and mild climate, results in a rich fauna of aquatic insects.

Morse et al. (1993, 1998) reviewed the status of Ephemeroptera, Plecoptera, and Trichoptera (EPTs) and Odonata in the southern Appalachian Mountains, and found that components of the fauna are vulnerable and at risk. They considered species potentially at risk based on whether they were rare, inhabited isolated or sensitive habitats, and were subject to identifiable threats. They listed 74 species of EPTs as potentially rare and vulnerable to range loss, regional extirpation, or extinction. The primary threats to the fauna were considered to be from human activities, both historical and current. These threats included the clearing of land for agriculture and development, logging, pollution from industrial activity, road and dam building, and the introduction of exotic species. Examples of the latter include chestnut blight over a century ago and *Adelges tsugae* Annand (hemlock woolly adelgids) in recent years. *Castanea dentate* (Marshall) Borhk (American chestnut) was the dominant forest overstory tree at mid elevations in GSMNP until *Cryphonectria parasitica* (Murrill) M.E. Barr (chestnut blight fungus) killed virtually all of them by the 1950s (Schlarbaum et al. 1999). The American chestnut was replaced largely by various *Quercus* spp. (oak species). Smock and MacGregory (1988) examined processing rates, feeding preferences, and growth of aquatic insects and found significantly higher leaf breakdown, consumption, and growth rates among species fed American chestnut leaves compared with

Figure 1. Great Smoky Mountains National Park showing second-order and higher streams with aquatic insect sampling locations represented as circles. Major watersheds are indicated by black dashed lines.
oak leaves. They suggested that, especially in headwater streams, the loss of American chestnut may have resulted in subtle changes at the population, community, and ecosystem levels. Recently hemlock woolly adelgid has infested GSMNP (Johnson et al. 2005). Snyder et al. (2002, 2005) found that hemlock decline may result in long-term changes in headwater streams, particularly in terms of alteration of the thermal and light regimes of the streams, leading to loss of biodiversity within and among stream reaches. Morse et al. (1993, 1998) also discussed the sensitivity of “island” populations of spring-inhabiting species that are threatened by drought, acid precipitation, or development.

In order to further the science-based management goals of GSMNP, an All Taxa Biodiversity Inventory (ATBI) was initiated in 1998 (Nichols and Langdon 2007, White and Langdon 2006). Among the goals of this effort are to discover the identity and distribution of the myriad species that inhabit the park. To assist the Park Service in conducting the ATBI, a non-profit organization—Discover Life in America (DLIA)—was created (Nichols and Langdon 2007). DLIA has provided organization, volunteers, and funding to help with the ATBI, including help with surveys of aquatic insects. In this report we focus on the Ephemeroptera (mayflies), Plecoptera (stoneflies), Megaloptera (dobsonflies, fishflies, and alderflies), and Trichoptera (caddisflies). We refer to these collectively as the EPMT orders, or the EPMTs. The EPMTs comprise those orders of insects whose species are primarily aquatic as immatures, except Odonata, which are discussed separately by Muise et al. (2007). These insects are ubiquitous in freshwater habitats and are found on all the continents except Antarctica. The rich aquatic habitats of GSMNP and the southern Appalachian Mountains have drawn aquatic entomologists to the region for decades to describe and study the aquatic insect life. We have built upon the foundation laid by previous workers and have attempted to fill gaps in coverage both spatially and taxonomically.

Methods

Aquatic insects were surveyed primarily by traditional sampling methods, including light trapping, sweep-netting, and hand collecting. We also took advantage of the work of others, gleaning aquatic specimens from the by-catches of various “bio-blitzes” that have been held in GSMNP as part of the ATBI. Bio-blitzes are intense 1- or 2-day collecting efforts, usually targeted at particular taxa (e.g., Lepidoptera and Coleoptera) or habitats (e.g., caves and high elevations) (Nichols and Langdon 2007). Rearing immatures to adults also has been used to confirm the identity of some of the species collected as larvae. Other data came from the GSMNP inventory and monitoring program for aquatic ecosystem health (Becky Nichols, National Park Service, GSMNP, Gatlinburg, TN, pers. comm.). Data also came from the ATBI structured-sampling pilot study, which operated Malaise and other types of traps at 11 plots located throughout GSMNP continuously for 2.5 years (Parker and Bernard 2006). In addition to the collecting done by the
authors, various students, and many DLIA volunteers, much valuable collecting was done by Ed DeWalt and Brian Heinold of the Illinois Natural History Survey, who concentrated their efforts on the west and southwest areas of GSMNP, but did not include Megaloptera (DeWalt and Heinold 2005, DeWalt et al. 2007). David Etnier, University of Tennessee, provided records from numerous studies he has conducted in GSMNP, and the North Carolina Department of Environment and Natural Resources, Division of Water Quality (NCDENR-DWQ), provided important mayfly records. Finally, species records were obtained from the literature.

Specimens are deposited in the collections of Clemson University, Colorado State University, GSMNP, the Illinois Natural History Survey, the NCDENR-DWQ, Purdue University, the Smithsonian Institution, and the University of Tennessee. Details may be obtained from the authors, and the records are available for perusal on-line at http://tremont22.campus.utk.edu/ATBI_start.cfm.

Results

More than 53,600 adult and 78,000 immature insects from 545 locations were examined. At present, 468 species of EPMTs are known from the Park, including 10 species new to science (Appendices 1–4). Four of the new species are mayflies (Acentrella barbarae Jacobus & McCafferty 2006, Heterocloeon davidi Waltz and McCafferty 2005, Procloeon new species, Centroptilum new species), two are stoneflies (Haploperla parkeri Kirchner and Kondratieff 2005, Soyedina new species), and four are caddisflies (Rhyacophila celadon Etnier, Stocks, and Parker 2005, Rhyacophila new species, Ceraclea new species, Neophylax kolodskii Parker 2000). Ten of the mayflies (Appendix 1), 12 of the stoneflies (Appendix 2), and 15 of the caddisflies (Appendix 4) were listed by Morse et al. (1993, 1998) as rare and vulnerable to extirpation. The new species and those considered vulnerable by Morse et al. are indicated in the tables.

Ephemeroptera

GSMNP contains a very diverse fauna of Ephemeroptera. The eastern Nearctic species of the Baetidae genera Acentrella, Acerpenna, and Baetis; the Ephemerellidae genera Attenella, Dannella, Drunella, and Ephemerella; the Heptageniidae genera Epeorus and Maccaffertium; and the Isonychiidae genus Isonychia are especially well represented in the Park. One-hundred twenty species have been documented to date (Appendix 1).

Most of the species found in GSMNP are relatively widespread throughout eastern or southeastern North America. Some species (e.g., Ameletus tertius McDunnough and Attenella margarita (Needham); DeWalt et al. 2007; Eric Fleek, NCDENR-DWQ, Raleigh, NC, pers. comm.) are better known from northeastern North America and have their southernmost records from the Park. One seldom-reported southeastern species, Isonychia hoffmani Kondratieff and Voshell, is known outside GSMNP only from a

Two new species of small minnow mayflies have been described recently based on material from GSMNP (Jacobus and McCafferty 2006, McCafferty et al. 2005). *Heterocloeon davidi* Waltz and McCafferty is known from the Oconaluftee River system and a few other North Carolina locales (McCafferty et al. 2005). *Acentrella barbarae* has been collected only from GSMNP. It is surprising that this species had not been discovered previously, considering that larvae have distinctive morphological features, such as dorsal abdominal projections, and that adults are attracted to lights and emerge throughout the year (Jacobus and McCafferty 2006).

In addition to the discovery of new species and extended geographic distributions, the ATBI has helped further our understanding of the life histories of many species. Previously unknown life stages and biological attributes have been discovered as a direct result of habitat observations and specimen-rearing of several *Ephemerella* species, for example (Jacobus and McCafferty 2001, Jacobus et al. 2002). Studies by Jacobus and McCafferty (2003b, 2004) and Webb and McCafferty (2006) have documented previously unknown morphological variation based on series of specimens that have been collected from GSMNP over a period of several years. The discovery of this variation led to revisions in the concepts of several species from the genera *Drunella, Epeorus, Ephemerella,* and *Serratella.* Jacobus and McCafferty (2003a, 2005) gave two ATBI research updates, providing general introductory information about the biology and taxonomic diversity of mayflies from GSMNP and efforts made to study them.

Plecoptera

Currently, 111 species of stoneflies (Appendix 2) have been confirmed from GSMNP including five new GSMNP records and two new species. The Plecoptera species in GSMNP are primarily southern Appalachian or widespread eastern North American taxa, and represent approximately 95% of the regional fauna of mountainous North Carolina, South Carolina, Tennessee, and Virginia. This supports the concept that national parks are often remarkable “islands” of biodiversity (Ruiter et al. 2005). Morse et al. (1993, 1998) considered several species of stoneflies found in the Park to be rare and vulnerable throughout their range. They indicated that *Beloneuria georgiana* (Banks) (“fairly common in a restricted area of North Carolina and Georgia, but at low densities”) and *Megaleuctra williamsae* Hanson and *Oconoperla innubila* (Needham and Claassen) (each known from only a few scattered locations) were especially vulnerable, being restricted to isolated springbrooks that are subject to threats of drought, acid precipitation, and development. *Zapada chila* Ricker (Smokies forestfly) is of special note, originally described from a single male and two female adults from Walker Camp Prong and the Newfound Gap area (Ricker 1952). Subsequently, only about 150 additional specimens, mostly imatures, have been collected from 12 localities. Currently, of the nine North
American species of Zapada, *Z. chila* is the most geographically restricted, still apparently known only from GSMNP.

Other uncommon regional endemics that have major known populations in GSMNP include: *Allocapnia fumosa* Ross, *A. stannardi* Ross, *Leuctra michellensis* Hanson, *L. monticola* Hanson, *L. nephophila* Hanson, *M. williamsae*, *Soyedina kondratieffi* Baumann and Grubbs, *Strophopteryx limata* (Frison), *Alloperla neglecta* Frison, *Sweltsa urticae* (Ricker), *Tallaperla elisa* Stark, *Acroneuria petersi* Stark and Gauñín, *B. georgiana*, *B. stewarti* Stark and Szczytko, *Cultus decisus isolatus* (Banks), *O. innubila*, *Yugus arinus* (Frison), *Isoperla bellona* Banks, and *I. distincta* Nelson. The above species are not commonly collected outside of GSMNP, with *T. elisa* apparently restricted to GSMNP. Additionally, an undescribed species of *Soyedina* is known only from the Park.

Megaloptera

This is a small order, with fewer than 300 species known worldwide, and fewer than 50 species known from North America (Anderson 2003, Poole and Gentili 1996). Seven species have been collected in GSMNP (Appendix 3). One, *Sialis joppa* Ross, was described from specimens collected in the Newfound Gap area of the Park. Each of these species is widespread in eastern North America (Flint 1964, Hazard 1960, Ross 1937). Brigham (1982) listed 18 species of Megaloptera from North Carolina and South Carolina, but it is likely that only two or three additional species of this order will be found in GSMNP.

Trichoptera

To date, 230 species of caddisflies have been recorded from GSMNP (Appendix 4). Seventy-two of these are new records, and at least five are new to science. One species, *Beraea nigritta* Banks (Beraeidae), is known only as larvae from a literature record (Stoneburner 1977), and has not been recollected recently. Other than this record from the North Carolina side of GSMNP, *B. nigritta* is known from Delaware, New Jersey, New York, and Pennsylvania (Morse 1993). It is possible that the record actually refers to another species, *B. gorteba* Ross, which is known from Georgia (Hamilton 1985). Until it can be confirmed, we consider the record for *B. nigritta* in the Smokies to be provisional.

Only one caddisfly species is apparently restricted solely to Great Smoky Mountains National Park. The recently described *Neophylax kolodskii* is known from just a few streams deep in the interior of GSMNP (Parker 2000). Other species are known from GSMNP and nearby areas, notably along the Blue Ridge Parkway. These include *Rhyacophila accola* Flint, *R. montana* Carpenter, *R. mycta* Ross, *R. celadon*, *Cheumatopsyche halima* Denning, *Theliopsyche corona* Ross, *T. epilonis* Ross, *Goera* new species, *Goerita flinti* Parker, *G. semata* Ross, *Wormaldia mohri* (Ross), and *Ceraclea* new species. Another 15 species are restricted to the Southeast, and the remaining species are more widely distributed in eastern North America.
Fifteen species known from GSMNP were regarded by Morse et al. (1998) as potentially rare or vulnerable to extinction (Appendix 4). The occurrence of these species within the confines of a national park is heartening for their prospects of survival, as the probability of the extirpation of local populations of these species is lowered because of the protected status afforded by the federal statutes that established the Park. For example, *R. montana*, which was described in 1933 from specimens collected in the Smoky Mountains, was not seen again until 55 years later. The larvae of *R. montana* live in films of water flowing over near-vertical rock faces, in crevices, or in wet moss. Since the discovery of the habitat of this species, additional populations outside of GSMNP were discovered along the Blue Ridge Parkway in similar habitats. It is likely that the protected status of the national parks where these high-elevation madicolous habitats occur helps keep *R. montana* safer from potential threats to its survival than it would be in the absence of this protection.

Discussion

The aquatic insect fauna of GSMNP is a rich subset of the fauna of the Southeast, which includes widespread elements of the North American fauna. The Southeast was never glaciated and represents one of the large southern refugia from which species spread northward as the last glaciers retreated (Flint 1971).

When the ATBI began, authorities with expertise in the flora and fauna of the southern Appalachians and GSMNP were asked to provide their best scientific estimates of the total number of species that might be expected to occur in GSMNP for the groups in which they had expertise. For the EPMTs, the consensus estimate was 650 species. The current total of 468 species represents 72% of the experts’ earlier estimate. In addition to the 72 new GSMNP records and 10 new species reported here, several additional undescribed species are known to us or have been reported among specimens being examined by others (R.E. DeWalt pers. comm.). These taxa have not been reported here because studies are continuing. DeWalt et al. (2007) found 169 species of EPTs in the southwest drainages they sampled. Using species-accumulation curves and statistical techniques, they estimated that an additional 80 to 120 species of EPTs would eventually be found in the sections of GSMNP where they concentrated their efforts. Estimating how many more species are to be expected Park-wide is difficult. Our current knowledge of the fauna is based on numerous types of sampling efforts over many years, most of which were not designed as inventories of species diversity. Traditional insect survey techniques such as light-trapping and sweep-netting are extremely difficult to quantify. Because of these considerations, we are unable to perform a statistical analysis of the Park-wide data.

Acknowledgments

We are grateful to Discover Life in America for providing funds for surveys of aquatic insects. The US Geological Survey provided funds for the ATBI pilot study,
specimens from which are included here. We thank the following individuals for providing specimens or species records: J. Burbank, J. Cooper, D. Etner, E. Fleek, R. Harrington, S. Higdon, R. Hightower, D. Jones, J. Moulton, R. Nichols, and J. Smith. Helpful reviews of a draft of the manuscript were provided by R. Nichols, F. van Manen, and Z. Johnson.

Literature Cited

Ameletidae
- *Ameletus cryptostimulus* Carle
- *A. lineatus* Traver
- *A. tertius* McDunnough

Baetidae
- *Acentrella* new species
- *A. parvula* (McDunnough)
- *A. turbida* (McDunnough)
- *Acerpenna macdunnoughi* (Ide)
- *A. pygmaea* (Hagen)
- *Baetis brunneicolor* McDunnough
- *B. flavistriga* McDunnough
- *B. intercalaris* McDunnough
- *B. pluto* McDunnough
- *B. tricaudatus* Dodds

Centroptilum new species
- *C. triangulifer* (McDunnough)
- *Diphetor hageni* (Eaton)
- *Heterocloeon curiosum* (McDunnough)
- *H. davidi* Waltz and McCafferty
- *H. frivolum* (McDunnough)
- *Paracloeodes minatus* (Daggy)
- *Plauditus dubius* (Walsh)
- *P. punctiventris* (McDunnough)
- *P. virilis* (McDunnough)
- *Procloeon* new species
- *P. rivulare* (Traver)
- *P. viridoculare* (Berner)
- *Pseudocentroptiloides usa* Waltz and McCafferty
- *Pseudocloeon frondale* (McDunnough)
- *P. propinquum* (Walsh)

Baetiscidae
- *Baetisca carolina* Traver
- *B. gibbera* Berner

Caenidae
- *Brachycercus nitidus* (Traver)
- *Caenis anceps* Traver
- *C. hilarsis* (Say)
- *C. latipennis* Banks
- *C. macafferti* Provonsha

Ephemerellidae
- *Attenella attenuate* (McDunnough)
- *A. margarita* (Needham)
- *Dannella lita* (Burks)
- *D. simplex* (McDunnough)
- *D. provonshai* (McCafferty)
- *Drunella allegheniensis* (Traver)

Ephemera new species
- *E. catawba* Traver
- *E. dorothea dorothea* Needham
- *E. excrucians* Walsh
- *E. hispida* Allen and Edmunds
- *E. invaria* (Walker)
- *E. septentrionalis* McDunnough
- *E. subvaria* McDunnough
- *Euryphilla aestiva* (McDunnough)
- *E. funeraria* (McDunnough)
- *E. minimella* (McDunnough)
- *E. verisimilis* (McDunnough)
- *Serratella deficiens* (Morgan)
- *S. molita* (McDunnough)
- *S. serrata* (Morgan)

Ephemeridae
- *Ephemera blanda* Traver
- *E. gutulata* Pictet
- *E. varia* Eaton
- *Hexagenia limbata* (Servile)

Heptageniidae
- *Cinygmula subaequalis* (Banks)
- *Epeorus dispar* (Traver)
- *E. fragilis* (Morgan)
- *E. pleuralis* (Banks)

Maccaffertium carlsoni (Lewis)
- *M. exiguum* (Traver)
- *M. ithaca* (Clemens and Leonard)
- *M. mediopunctatum mediopunctatum* (McDunnough)
- *M. meririvulanum* (Carle and Lewis)
- *M. modestum* (Banks)
- *M. mexicanum integrum* (Ulmer)
- *M. pudicum* (Hagen)
- *M. pulchellum* (Walsh)
- *M. sinclairi* (Lewis)
- *M. terminatatum terminatatum* (Walsh)
- *M. vicarium* (Walker)
- *Nixe perfida* (McDunnough)
- *N. spinosa* (Traver)
- *Rhithrogena amica* Traver
- *R. exilis* Traver
- *R. fasciata* Traver

Corydalidae

Chauliodes pectinicornis Linnaeus
C. rastricornis Rambur
Corydalus cornutus (Linnaeus)
Nigronia fasciatus (Walker)
N. serricornis (Say)

Sialidae

Sialis joppa Ross
S. velata Ross

Apataniidae
Apatania praevolans (Morse)
A. rossi (Morse)

Beraeidae
Beraea species

Brachycentridae
Brachycentrus appalachia Flint
B. lateralis (Say)
B. nigrosoma (Banks)
B. spinae Ross
Micrasema bennetti Ross
M. burksi Ross and Unzicker
M. charonis Banks
M. rusticum Ross
M. scotti Ross
M. wataga Ross

Calamoceratidae
Anisocentropus pyraloides (Walker)
Heteroplectron americanum (Walker)

Dipseudopsidae
Phylocentropus auriceps (Banks)
P. carolinus Carpenter
P. lucidus (Hagen)

Glossosomatidae
Agapetus crasmus Ross
A. hessi Leonard and Leonard
A. iridis Ross
V A. jocassee Morse
A. minutus Sibley
A. pinatus Ross
A. rossi Denning
A. tomus Ross
Glossosoma nigrior Banks
Matrioptila jeanae (Ross)

Goeridae
Goera calcarata Banks
G. fuscula Banks
+ G. new species
Goerita betteni Ross
G. flinti Parker

Helicopsyche borealis (Hagen)

Hydropsychidae

Arctopsyche irrigata Banks
Cheumatopsyche analis (Banks)
C. campyla Ross
C. ela Denning
C. enigma Ross, Morse, and Gordon
C. geora Denning
C. gyro Ross
C. halima Denning
C. harwoodi Denning
C. helma Ross
C. oxa Ross
C. pasella Ross
C. speciosa (Banks)
Diplectrona metaqui Ross
D. modesta Banks
Homplectra doringa (Milne)
Hydropsyche (Ceratopsyche) alhedra Ross
H. (Ceratopsyche) bronta Ross
H. (Ceratopsyche) cheilonis Ross
H. (Ceratopsyche) macleodi Flint
H. (Ceratopsyche) morosa Hagen
H. (Ceratopsyche) slossonae Banks
H. (Ceratopsyche) sparna Ross
H. (Hydropsyche) betteni Ross
H. (Hydropsyche) carolina Banks
H. (Hydropsyche) depravata Hagen
H. (Hydropsyche) franclemonti Flint
Hydropsyche (Hydropsyche) rossi Flint, Voshell, and Parker
H.(Hydropsyche) scalaris Hagen
H. (Hydropsyche) simulans Ross
H. (Hydropsyche) venularis Banks
Parapsyche apicalis (Banks)
P. cardis Ross

Hydroptilidae
Dibusa angata Ross
Hydroptila amoena Ross
H. armata Ross
H. callia Denning
H. chattanooga Frazer and Harris
H. delineata Morton
H. fiskei Blickle
H. grandiosa Ross
H. hamata Morton
H. oneili Harris
H. remita Blickle and Morse
H. scolops Ross
H. talladega Harris
H. valhalla Denning
H. waubesiana Betten
Leucotrichia pictipes (Banks)
Mayatrichia ayama Mosely
Ochotrichia graysoni Parker and Voshell
Oxyethira michiganensis Mosely
 O. novasota Ross
 O. pallida (Banks)
 Palaeagapetus celsius (Ross)
 Stactobiella delira (Ross)
 S. martynovi Blickle and Denning
 S. palmata (Ross)

Lepidostomatidae
 Lepidostoma americanum (Banks)
 L. bryanti (Banks)
 L. carrolli Flint
 L. compressum Etnier and Way
 L. excavatum Flint and Wiggins
 L. flinti Wallace and Sherberger
 L. frosti (Milne)
 L. griseum (Banks)
 L. latipenne (Banks)
 L. lobatum Wallace and Sherberger
 L. lydia Ross
 L. mitchelli Flint and Wiggins
 L. modestum (Banks)
 L. onterio Ross
 L. pictile (Banks)
 L. sackeni (Banks)
 L. stygifrum Flint and Wiggins
 L. tibiale (Carpenter)
 L. tohatum (Hagen)
 Theliopsyche corona Ross
 T. epilonis Ross
 T. grisea (Hagen)

Leptoceridae
 Ceraclea ancylus (Vorhies)
 C. cancellata (Betten)
 C. dilata (Hagen)
 C. flavia (Banks)
 C. maculata (Banks)
 C. nepha (Ross)
 * C. new species
 C. tarsipunctata (Vorhies)
 C. transversa (Hagen)
 Leptocerus americanus (Banks)
 Mystacides sepulchralis (Walker)
 Nectopsyche candida (Hagen)
 N. exquisita (Walker)
 Oecetis avara (Banks)
 O. inconspicua (Walker)
 O. nocturna Ross
 O. persimilis (Banks)
 Setodes steffi (Ross)
 Triaenodes ignitus (Walker)
 T. injustus (Hagen)
 T. marginatus Sibley
 T. perna Ross
 T. taenius Ross
 T. tardus Milne

Limnephilidae
 Frenesia difficilis (Walker)
 F. missa Milne
 Hydatophylax argus (Harris)
 Ironoquia punctatissima (Walker)
 Platycentropus radiatus (Say)
 Pseudostenophylax sparsus (Banks)
 P. uniformis (Betten)
 Pycnopsyche antica (Walker)
 P. conspersa Banks
 P. divergens (Walker)
 P. flavata (Banks)
 P. gentilis (MacLachlan)
 P. guttifer (Walker)
 P. lepida (Hagen)
 P. luculenta (Betten)
 P. sonso (Milne)
 P. subfasciata (Say)

Molannidae
 Molanna blenda Sibley
 M. ulmerina Navas

Odontoceridae
 Pseudogoera singularis Carpenter
 Psilotreta amera (Ross)
 P. frontalis Banks
 P. labida Ross
 P. rossi Wallace
 P. rufa (Hagen)

Philopotamidae
 Chimarra aterrima Hagen
 C. augusta Morse
 C. obscura (Walker)
 C. socia Hagen
 Dolophilodes distinctus (Walker)
 D. major (Banks)
 D. sisko ()
 Wormaldia moesta (Banks)
 W. mohri (Ross)
 W. shawnee (Ross)

Phryganeidae
 Agrypnia vestita (Walker)
 Ptilostomis ocellifera (Walker)
 P. postica (Walker)

Polycentropodidae
 Cyrrhulus fraterinus (Banks)
 Neureclipsis crepuscularis (Walker)
 Nyctiophylax affinis (Banks)
 N. moestus Banks
 N. nephophilus Flint
 N. uncus Ross
 N. banksi Morse
 N. celta Denning
 N. denningi Morse
Polycentropus blicklei Ross and Yamamoto

V
P. carlsoni Morse
P. carolinensis Banks
P. cinereus Hagen
P. colei Ross
P. confusus Hagen
P. crassicornis Walker
P. maculatus Banks
P. rickeri Yamamoto

Psychomyiidae
Lype diversa (Banks)
Psychomyia flavida Hagen
P. nomada (Ross)

Rhyacophilidae
V
Rhyacophila accola Flint
R. acutiloba Morse and Ross
V
R. amicus Ross
R. appalachiensis Morse and Ross
R. atrata Banks
R. banksi Ross
R. carolina Banks
R. carpenteri Milne
* R. celadon* Etnier, Stocks, and Parker
R. formosa Banks
R. fuscula (Walker)
R. minor Banks
R. montana Carpenter
R. mycta Ross
R. nigrita Banks
R. glaberrima Ulmer
R. ledra Ross
R. mainensis Banks
R. new species
R. teddyi Ross
R. torva Hagen
R. vibox Milne

Sericostomatidae
Agarodes tetron (Ross)
Fattigia pele (Ross)

Uenoidae
Neophylax aniqua Ross
N. concinnus MacLachlan
N. consimilis Betten
N. fuscus Banks
N. kolodskii Parker
N. mitchelli Carpenter
N. oligius Ross
N. ornatus Banks