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Identifying the mechanisms driving adaptive radiations is key 

to explaining the diversity of life. The extreme reliance of spiders 

upon silk for survival provides an exceptional system in which 

to link patterns of diversification to adaptive changes in silk use. 

Most of the world's 41,000 species of spiders belong to two apical 

lineages of spiders that exhibit quite different silk ecologies, 

distinct from their ancestors. Orb spiders spin highly stereotyped 

webs that are suspended in air and utilize a chemical glue to 

make them adhesive. RTA clade spiders mostly abandoned silk 

capture webs altogether. We recently proposed that these two 

clades present very different evolutionary routes of achieving the 

same key innovation—escape from the constraints imposed by 

spinning webs that contain a relatively costly type of physically 

adhesive cribellate silk. Here, we test the prediction that orb 

and RTA clade spiders are not only more diverse, but also have 

higher fecundity than other spiders. We show that RTA clade 

spiders average 23% higher fecundity and orb spiders average 

123% higher fecundity than their ancestors. This supports a 

functional link between the adaptive escape from cribellate silk 

and increased resource allocation to reproduction in spiders. 

Adaptative radiations explain much of the modern earth's 

diversity of life.1'2 Yet, identifying the mechanisms driving the 

success of those radiations is difficult. ' Spiders provide an excep- 

tional system in which to test links between putative adaptations 

and patterns of speciation because of their extreme reliance on 

silk. Spider webs epitomize the adaptive use of high performance 

biomaterials in animal architecture.6'7 All of the world's 41,000+ 

species of spiders spin silk fibers with strength to weight ratios 

up to five times greater than steel. Thus, it is not surprising that 

the spectacular evolutionary and ecological success of spiders is 
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generally attributed to key innovations in the production and use 

of different silks.8"12 The aerial orb webs of the Orbiculariae are 

one such example, which utilize a composite architecture including 

a framework of stiff, exceedingly strong major ampullate silk radii 

to suspend a highly elastic capture spiral coated with droplets of 

liquid glue (Fig. 1). The capacity of orb webs to reliably absorb 

the high energy impact of flying prey helped to make orbicularian 

spiders dominant predators of aerial insects in many ecosystems. 

However, such silk production is not without cost. Silk threads 

are composed primarily of proteins and a single orb web can be as 

much as 0.1—1% of a spider's wet body mass. Thus, replacing lost 

webs from body reserves is presumably expensive. Furthermore, 

some silks cost more energy to spin than others. In particular, the 

cribellate silk used as adhesive fibers in relatively primitive spider 

webs functions through van der Waals interactions and physical 

entanglement. ' This contrasts with the chemically adhesive 

glycoproteins found in the aggregate glue droplets of modern 

orb spiders. In a time and energy-consuming process, cribellate 

spiders physically comb out puffs of silk containing the hundreds 

to thousands of nanoscale fibrils required for adhesive function (Fig. 

1A). Consequently, spiders that utilize cribellate silk tend to show 

high fidelity to individual webs. In contrast, most derived spiders 

have either abandoned capture webs entirely or evolved chemi- 

cally adhesive, aggregate glue, which allows webs to be constructed 

quickly and for silk to be recycled when webs are taken down and 

consumed. ' We recently used a total evidence based phylogeny 

of spiders to demonstrate that these two behavioral patterns of silk 

use are derived strategies that mark the two most successful clades of 

spiders—wandering hunter/ambushers in the RTA clade (-22,000 

species) and the orb-weaving Araneoidea (-12,000 species). We 

suggested that "escape" from the constraints imposed by use of 

expensive cribellate silk was causally related to the latter adaptive 

radiations of RTA clade and Araneoidea, such that the evolutionary 

shifts away from the use of capture silk altogether, and to chemically 

adhesive glue, played an important role in shaping the diversifi- 

cation of modern spiders. In turn, the hypothesis predicts that 

adaptive changes in silk use should be accompanied by increased 

fecundity. Here, we test this prediction by examining the correla- 

tion between changes in web use and fecundity across spiders. 
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Comparing Spider Fecundity 

Reproductive output of spiders, measured 

as clutch size, generally increases with body 

size of spiders, both within and among 

species. Here, we present data on repro- 

ductive output from 343 species across 60 

of the 105 extant families of spiders, repre- 

senting all higher lineages (see appendix). 

Comparative data is best analyzed in a phylo- 

genetic framework, such as independent 

contrasts, to control for the inflation of 

degrees of freedom that can occur when 

comparing close relatives. However, this 

is not feasible for the current data because 

most spider phylogeny is largely unknown. 

Prior studies also show that the relationship 

between spider body size and fecundity is 

relatively similar regardless of the use of "raw" 

or phylogenetically independent data.19'20 

Therefore, we concentrate on the phenotypic 

data themselves, with an understanding that 

Type I error may be somewhat inflated by 

this approach. 

Spider length was highly correlated with 

spider fecundity in a regression analysis (R 

= 0.49, p < 0.00001)(Figure 2). We therefore 

used the standardized residuals of fecundity 

vs. body length to compare the reproductive 

output of orbicularian and RTA clade spiders 

versus all other taxa ("outgroup"). The lineage 

of spiders had a highly significant effect on 

residual fecundity (ANOVA F2 340 = 40.4, p 

< 0.00001). Both RTA clade and orbicularian 

spiders had higher fecundity than all other 

spiders (23 and 123% respectively). Furthermore, orbicularians 

were significantly more fecund than the RTA clade (Fig. 3). 

While other factors also contribute to reproductive output, we 

argue that clutch size is a good overall estimator. Energy content of 

eggs is similar across a broad survey of spider taxa. Many spiders 

can produce more than one clutch of eggs over their lifetime, but 

past studies suggest that individual clutch size strongly correlates 

positively with number of clutches. Finally, there is currently no 

consensus on the potential for an egg size-number tradeoff within 

clutches, with near simultaneous studies proposing evidence for 

and against the hypothesis. Thus, single clutch remains at least a 

reasonably accurate estimator of overall spider reproductive effort. 

Fecundity and Spider Evolution 

The derived predatory behaviors considered here, develop- 

ment of aerial webs and loss of capture webs all together, are quite 

different. But, both allow "escape" from dependence on expen- 

sive cribellate silk. Moreover, we show here that this escape 

is significantly correlated with increased reproductive output in 

both clades. 

Figure 1. Spiders use silk in three broadly different strategies for prey capture. (A) Many spiders 
spin a variety of sheet webs with relatively amorphous architectures. These webs lack stereotyped 
major ampullate supporting threads and utilize cribellate adhesive threads (shown here in darkfield 
at the bottom of the panel). Cribellate silk consists of one or more pairs of core fibers surrounded 
by a sheath of nanoscale fibrils physically combed into puffs by the spider. (B) Nearly all orb weav- 
ing spiders and their relatives use stereotyped web spinning behaviors and defined frameworks of 
dragline silk to suspend webs relatively far from substrate. Thus, the form of the web is taxonomi- 
cally rather than substrate specific. Most also utilize aggregate capture silk (see text). (C) RTA clade 
spiders tend to stalk or ambush prey, having abandoned the use of capture silks altogether. 
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Figure 2. Log-log plot of clutch size versus body size in spiders. 
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Figure 3. Relationship between fecundity and silk use by spiders. Residuals for egg production were calculated from the regression of individual clutch 
size on spider body length in Figure 2. The graphs show histograms of residual egg production for species within each of two highly successful, api- 
cal clades of spiders compared to all other taxa of spiders. The phylogeny is summarized from Blackledge et al. 2009 and illustrates the relationship 
between species diversity (total size of pie charts) and silk use ecologies (colors) among spiders. 

The clutch sizes of orb spiders are much higher than either 

distant outgroup taxa or their sister lineage, the RTA clade (Fig. 

3). The evolution of the stereotyped behaviors and the aerial 

frameworks of dragline silk used in the construction of orb webs 

may therefore have enabled access to a new source of abundant 

prey, flying insects, which neither hunter/ambushers nor primitive 

cribellate spiders can easily catch. Indeed, growing ecological data 

support the hypothesis that evolution has placed a premium on a 

fast growth life history for orb spiders. Positive, fecundity-based 

selection on female body size in orb spiders necessitates high 

rates of prey capture. Much of this biomass consumed by orb we- 

avers is subsequently converted into egg production. ' While 

spiders are famous for their low metabolic rates, orb spiders 

are exceptions. Many orb spiders have notably higher metabo- 

lisms and they require high rates of prey capture for survival 

and reproduction. In contrast, some wolf spiders (RTA clade) 

and filistatids (an "outgroup" taxon in this study) can survive 200 

days without food.    Thus, while the evolution of glue-coated orb 

webs represents a major evolutionary innovation in spiders that 

facilitates increased reproductive output; it may also have imposed 

a new set of ecological constraints that further shaped the evolu- 

tion of silk use in these spiders. 
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