JULY 1995

SPHECOS 29

A FORUM FOR ACULEATE WASP RESEARCHERS

O UR FUNDS ARE DEPLETED
DONATIONS GLADLY ACCEPTED!

This issue of Sphecos has depleted our reproduction fund. It is now zero. Thus more donations will be needed to keep this newsletter going. Your past support has been wonderful and very gratifying, and I hope that some of you will be able to help out again so that we can continue. Duplication costs for a normal size issue are roughly $650 (700 copies).

The meetings of the International Society of Hymenopterists will be in Davis, California this summer (Aug. 12-17). Nancy and I hope to see many of you there. It should be a great meeting. Lynn Kimsey and her gang are going all out to make this meeting a success. My retirement plans were announced in Sphecos 28. I am searching for a replacement editor so that the newsletter does not die. I will bring this up at the meetings in Davis. It is imperative that someone come forward to take over.

I now have my own e-mail address: mthren23@email.ste.edu. You can reach me here for regular correspondence and change of address notices. Submissions to Sphecos should still be sent to Terry.

ARNOLD S. MRENTE, Editor
TERRY MRENTE, Assistant Editor
Systematic Entomology Laboratory
Agricultural Research Service, USDA
U.S. National Museum of Natural History
Smithsonian Institution
Washington, DC 20560
FAX: (202) 786-9102 Phone: (202) 386-1000
E-MAIL: (Arnie): mthren23@email.ste.edu
(Terry): tthren@email.sars.anr.gov

More Donors to the Sphecos Fund:

- Jorge M. Gonzalez
- Peter Yeo
- Tom Mason
- Toronto Zoo
- Jeff Klahn
- Joseph Aisla
- J. Tomos
- Frank Creutzburg
- Roberto Cambra
- Seiki Yamane
- Tadashi Tano
- Hermann Dollfuss
- Bolivar Garrote
- Barret
- Ken Guichard
- Jung-Tai Chao
- Sultana Noriko
- EdBerto
- Giannotti
- Vera Machado
- Elias Cainerades

RESEARCH NEWS

Dick Bohart (Dept. of Entomology, Univ. California, Davis, CA 95616-0854) reports, "I am working on Bembecinae again. The two papers underway: Entomognathinae and Bicytes are essentially done."

Walter Borstalo (Museo Civico di Stor. Naturale [Sez. di Zootologia], Lung. Porta Vittoria, 9, 37129 Verona, Italy) writes: "At the present I am preparing a revision of some australian Eumenidae of the genera Ischnoceraea Perkins (Eumenidae Ischnocerinae), Atrastydynarus G. Soka and Stemlynetus G. Soka."

Bolivar Garrote Barret (Sección Inventarizadora, Mus. Nac. Hist. Nat. Paraguay, Sucursa 19 Campina, Ciudad Univ., Central XI, San Lorenzo, Paraguay) writes, "I am presently working on systematics, biogeography and biology of polistine wasps in Paraguay. In addition, with Massimo Omi, I'm preparing a list of Dryinidae of Paraguay, and with the help of Jim Carpenter I'm planning to study the long-overlooked collection of A.W. Bertoni. I am also the curator of Hymenoptera at this museum.

Arkady Lelej (Inst. Biology and Pedology, Vladivostok-22, 690022, Russia) "I am now finishing the third paper in the series on Smirnomyrmex with a review of six genera (four of them new). I plan to continue my work and study another difficult group - Orien- tal Trogossandini - and produce a key to the genera of this tribe. It will take at least one year or more and I'll try to re- ceive a grant (you know about the serious problems in Russia and my salary - less than US$ 100 per month, not even enough for food.

Peter van Ooijen (Prof. v. Bemmelstraat 61, 3571 EI Utrecht, Holland) says, "Not much research news, my Pompilid collection has gone to the ITZ Amsterdam, and after reorganising their Dutch collection and halfway reorganis- ing the Palaearctic collection I quit pom- pilids. My Sphecid collection, including the type specimens of Tachyphasia picnica, has joined the collection of the RMNH at Leiden."

"As for myself I am working on software, rearing tropical fish, trying to rear aculeates in my garden and wondering..."
OBITUARY

George R. Ferguson
(January 8, 1915-June 24, 1994)

George Ferguson passed away last year at the age of 79. The following account is based on an article that appeared in the September 1986 issue of the college newsletter, "The Oregon State Student." Ferguson was a professor and master's degrees from the Oregon State University. Ferguson left OSU to continue his studies at the Ohio State University, where he earned a doctoral degree in entomology in 1941.

"I decided to specialize in the chemical control of insects," he noted. "because that's where the jobs were." Although he returned to the Oregon State University, he continued his research on insects and eventually earned a position in entomology in 1941.

"It was my job to lead the company out of the red by developing new products," Ferguson said. "We worked on two additional large plants -- in Alabama and Louisiana -- and produced other chemicals. I had the satisfaction of turning a business around and seeing the company grow from five to 150 million dollars in a year."

Ferguson became executive vice-president of Geigy in 1969 and vice-president of Ciba-Geigy in 1970 following the merger of the two firms. He retired from the corporation in 1972.

After retiring from his productive career in the corporate world, George moved back to Corvallis, Oregon in 1973 from Scarsdale, New York, so that he could resume the systematic study of wasps at his old alma mater. He was a courtesy appointment in the Department of Entomology at Oregon State University where he assisted graduate students. George dedicated his time to studying, collecting, and describing wasps, a species of wasp that is an important pollinator.

George first became interested in bees and wasps in the 1980s when he took a course in beekeeping at Oregon State University from entomology professor Herman Scullen. While his professional career was in the field of insect control, his keen curiosity about wasps became a lifelong avocation that took up most of his spare time. In retirement, George pursued studies of sphecid wasps in the genus Cerceris, Cerceris, and Philanthus, possibly influenced by his early contact with Herman Scullen, who worked on these wasps for many years. Apparently George enjoyed reading about the wasps and always tried to add new species to his collection.

Ferguson's knowledge of these wasps was vast, and he frequently wrote letters to the editor of various entomological journals discussing the taxonomy and natural history of these wasps. He was an active member of the Entomological Society of America and the American Entomological Society.

Ferguson's contributions to the study of wasps were significant, and his work has been cited in numerous scientific publications. He is remembered as a dedicated scientist and enthusiastic collector of wasps. His legacy continues to inspire future generations of entomologists.

tific writer on insect natural history in his native language. He published a series of volumes, 1943-1983, that he titled his own "souvenirs entomologiques". He translated the titles as "Membranous of a naturalist and Fifty years keeping insect life. The series consisted of vignettes of behavior of a variety of insects but concentrated on solitary wasps and bees. More than half of the 150 titles were never published in entomological journals.

He loved children, and published several books just for them. At the elementary level he designed a kindergarten book on Pollistes in 1971, entitled Aizuhaga-bachi (long-legged wasp); the text and illustrations were by H. Nobe and N. Tomoko respectively. In 1974 he published a book for older children, Lives of Wasps and Bees, with photographs by H. Oda. This book was awarded the prestigious Mainichi Publications Culture Award for 1974 from the Mainichi Newspapers.

In 1982 he published an elegant book, Japanese Bees and Ants Life Illustrated Phylogenetically. The text is by Iwata, and the 84 color plates of numerous, excellent photographs of adults and nests are by his co-authors, K. Kojima, M. Matsumura and K. Goudin. In my letter acknowledging receipt of this handsome book, I congratulated Kunio on his splendid contribution that would enable the layman to appreciate the beauty and complexity of the animals that we love so much. I commented on the quality of the photographs that were so sharp, with color so true, and with a wonderful depth of focus. Regrettably, the book is out of print; there are no plans to republish it.

I am grateful to Kazuko Iwata for furnishing the following biographical data for Kunio, as she was born 25 May 1906 in Osaka. The family moved in 1910 to a residential suburb, Ikeda. His father died in 1917, leaving his widow to raise Kunio and five sisters in needy circumstances.

Kunio received his Master's degree from the Agricultural Department of Kyoto University in 1931, and remained for several years as an unpaid assistant in the laboratory. Between 1934 and 1941 he taught biology in several high schools. He submitted his D.Sc. thesis to Kyoto University before his departure to Japan, and authored a research paper on the biology of the beetle.
species which, depending on their phylogenetic history, may include different taxa. These taxa are named, e.g., Scaptiphora, Sphex, and Prionyx. The traditional classification of these taxa is by tribe and these tribes are further divided into genera. The traditional classification recognizes the rank of tribe within the family Hymenoptera, and the two tribes are known as the Hymenoptera in the traditional classification.

As De Queiroz & Gauthier (1994: 27) have shown, "the current nomenclatural system is clearly non-evolutionary." The most accepted method that accomplishes this goal is provided by the theory of phylogenetic systematics sensu Mayr (1950), which uses a "phylogenetic systematics" rather than "classifica-
tion" to emphasize the methodological differences. For detailed explanations of the theoretical basis of phylogenetic systematics see e.g. Wiley (1981) andAX (1987). Given that the central principle of phylogenetic systematics is the recognition and characterization of species and monophyletic taxa one may ask what role a system of biologically organ-
ized structures can play in this scientific process. As the existence and the recog-
nizability of natural entities are inde-
dependent of any system of names, the process of naming taxa has no influ-
ence on any scientific process that is a part of a nomenclatural system. Only by following the recognition and character-
ization of the natural entities one should ask which name is the best for each en-
tity. As scientists need to communi-
cate with each other it is necessary to give each of these entities a proper name. The function of a taxonomic name is to refer uniquely to a taxon. The set of rules and principles that govern the selection and the use of tax-
onic names to express or at least maxi-
mize ambiguity, that is synonymy and homonymy, is called a nomenclatural system.

In summary, systematics and monophyleti-
cism can be adequately recognized in nature. Any relationships between the scientific process of analyzing phy-
logenetic relationships amongst the named taxa is to gain unambiguity but are only a question of conventions.

Nevertheless, ever since Linné's no-
nomenclatural system based on the as-
signment of the so-called Linnaean cat-
ergories like "family" and "order" started the use of development of the system of the ICZN any taxonomic name has to be connected to such a category to ad-
just it to the rules. The taxonomic name is to gain unambigu-
ity in a nomenclatural system. What in-
formation content does the additional category express to justify its existence and that could not be expressed by the proper name itself? Is there any logical reason why monophyletic taxa must be classified? The subjectivity of using categories is clearly seen in the often discussed problem concerning the "best" taxonomic rank to assign to the bee subgroups. Some hyme-
nonymists prefer to say "subfamily Cal-
opsidae", while nowadays the majority ad-
vocates to use a "higher" rank, that is "family Calopsidae" (e.g. Michener 1969, Michener et al. 1994). Unfortunately, there is no logical and scientific reason for how one could come to prefer one possibility rather than the other. The same is true for the "Sphexidae". While the majority agrees upon the "subfamily in Bohart & Menke (1979), Albert Fennoscia (in: Goulart & Huber 1996) "elevated" to the rank of a family. One can say that categor-
ies to family level, Menke & Pauwels (1993) wonder about Fennoscia's ar-
duous for doing so, that is to "... make the classification comparable to that widely accepted by S. (Fen-
noscia), is never reversed: "Why not make bees comparable to sphexids and recognize only Apididae" (Menke & Pauwels). Indeed, their question is justi-
fied but one cannot expect a satisfying answer to it (that is a scientific one). The conflict clearly shows the arbitrar-
iness in assigning categories. The wide-
ly accepted usage of subfamilies in Bo-
hart & Menke is simply a result of the convention-induced by the comprehen-
siveness of their monumental study. Nevertheless, as Fennoscia's family category as well as Bohart & Menke's subfamily category lack any scientific foundation or even requirement, it is impossible to find a reason to prefer one of them. (Nevertheless, one may say if the names of the sphecid subgroups in the form Larriniae rather than Larrinae depend on whether they are traditionally ranked as a sub-
family or a family, should be protected as well as species names in the new form used by Bohart & Menke to gain stability.) Anyway, the point is that the discussion about the "best" category does not lead to a better understanding of the groups studied. Furthermore, this discussion as possible if it is dealt with a scientific problem while it is just one of form.

It should be stressed that many more difficulties appear when one attempts to adapt the classification system of the Linnaean categories to a phylogenetic system. The encyclopedic hierarchy of sis-
ter groups with their identical rank leads to the demand for identical categories in a classification system. Due to the high number of sister groups the use of categories is very limited. For example, this is easily seen in Byron Alexander's (1992) comprehensive analysis of the subgroups within the Apoidea that are traditionally ranked as tribes. If we rec-
ognize, in accordance with common practice, the Apoidea as a superfamily and one of the most basic groups like Laphygogyni as a tribe, innumerable additional categories are necessary to classify each pair of newer groups be-
tween these categorial ranks. Harris (1951) has attempted to solve this problem proposing eight prelances to in-
crease the number of possible categor-
es. Nevertheless, verbal construction like "Gigapoterine" even more show the subjectivity of assigning categories to taxa: Who would be able to decide be-
tween "Gigapoterine" and "Megapoter-
idea" depending on what a scientist be-
lieves to be the best for his purpose?

This problem is closely related to the term "monophyletic" with respect to nomenclature.

Stability in the sense of the ICZN aims at the uniqueness and distinctness of the taxonomic names itself (in combination with the category assigned to this name). As this is correct, taxonomic names are able to change their meaning, that is a taxon name is related to slightly different taxa in different times, depending on the sci-
cientistic progress. This situation leads to confusion and to the requirement to supplement old names with more infor-
mation to specify what a certain scien-
tic name means. E.g. using the name Vespi-
culae is not sufficient to specify if one refers to the monophyletic including the Eucharitinae, Masarinae, Eumeni-
HYMENOPTERA DATABASE

I have created on the PC a program in DBase IV for listing the species of Hymenoptera. The program includes 13 groups of Hymenoptera (Table A) and it is possible to expand it. For each genus there are 4 database files (Table B): the first for species, the second for subspecies, the third for synonyms of species and the fourth for synonyms of subspecies. Every file is used for printouts and searches (Table C).

At present the number of species included in the program is:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1067</td>
<td>94</td>
<td>1285</td>
</tr>
<tr>
<td>B</td>
<td>690</td>
<td>25</td>
<td>283</td>
</tr>
<tr>
<td>C</td>
<td>6342</td>
<td>75</td>
<td>2839</td>
</tr>
<tr>
<td>D</td>
<td>1887</td>
<td>36</td>
<td>585</td>
</tr>
<tr>
<td>E</td>
<td>1061</td>
<td>305</td>
<td>340</td>
</tr>
<tr>
<td>F</td>
<td>330</td>
<td>95</td>
<td>82</td>
</tr>
<tr>
<td>G</td>
<td>2245</td>
<td>559</td>
<td>1219</td>
</tr>
<tr>
<td>H</td>
<td>2830</td>
<td>663</td>
<td>1424</td>
</tr>
<tr>
<td>I</td>
<td>1440</td>
<td>268</td>
<td>891</td>
</tr>
<tr>
<td>L</td>
<td>3033</td>
<td>229</td>
<td>1551</td>
</tr>
<tr>
<td>M</td>
<td>3736</td>
<td>467</td>
<td>1141</td>
</tr>
<tr>
<td>N</td>
<td>2338</td>
<td>249</td>
<td>1271</td>
</tr>
<tr>
<td>O</td>
<td>6914</td>
<td>895</td>
<td>2932</td>
</tr>
</tbody>
</table>

Total 33463 3960 15821 847

ELENCO SPECIE HYMENOPTERA

SCELTA DEL TAXON DA ELABORARE

Symphyta
A - Tutte le famiglie

Apoidea
B - Inneomeoidea + E vacinoidae

Hymenoptera
C - Chilooidea

Cynipoidea + Cynipoidae + Altre

Aculeata
E - Chrysidoidea

M - Scoioidae

F - Formicoidea

G - Vespoidea + Pompilioidea

H - Sphecioidea

I - Cetidae + Halictidae + Melittidae + Apidae

L - Andrenoidae

N - Megachilidae

L - Anthophoroidea

Scelgili il taxon da elaborare (anche per terminare)

Table A

STAMPA

A - Checklist specie Italian
B - Elenco genere attuale
C - Elenco generico Italiano
D - Elenco specie Collezione
E - Situazione spec. singola
F - Elenco per gruppo specie
G - Ricerca nome nel Genere
H - Ricerca nome nell’Elenco
I - Elenco genere nominale
L - Elenco alfabetico Generi
M - Elenco nomi per Autore
U - Fine delle elaborazione
Operare scelta prego >> <<

Table C

TAXON scelto: SPHECOIDEA

Genere in elaborazione: Rhinocyrtura

<table>
<thead>
<tr>
<th>Specie</th>
<th>Subspecie</th>
<th>Sin specie</th>
<th>Sin subspecie</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO in Archivio</td>
<td>6914</td>
<td>895</td>
<td>2932</td>
</tr>
<tr>
<td>NO in Elaboraz.</td>
<td>4</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Dim. in Arch.</td>
<td>1099352</td>
<td>142305</td>
<td>419276</td>
</tr>
<tr>
<td>Dim. da Elab.</td>
<td>636</td>
<td>0</td>
<td>143</td>
</tr>
</tbody>
</table>

TAXON scelto: SPHECOIDEA

Genere in elaborazione: Rhinocyrtura

Finsino a fine elaborazione.

Table B
submit for publication. In an attempt to find out whether or not Mrs. Page had published these observations, I searched through various biological, entomologi- cal and natural history journals from the southwestern U. S. After striking out I telephoned Howard Evans, Karl Krumbel and Arnold Menke, all avid aculeate Hymenoptera literature readers, but none of these individuals had seen anything in print about a cave-inhabiting pompilid wasp. I have been advised to repeat Mr. Page’s search and identifying valuable observations in this journal, before I misplace or forget them.

Mr. Page’s notes on this species ex- tend from October 7, 1990 to May 17, 1992. Both males and females of A. evansii were active during the months of March, April, May, September, October, November and December. In addi- tion there are two specimens of this species in the University of Arizona In- sect Museum, both from high eleva- tions in mountains, collected in July and October. The sum of these collect- ion and observation dates indicates that A. evansii is probably multivoltine in the region. When Mr. Page revisited Ar- kenstone Cave in June, July and Au- gust 1991 she saw no wasps, suggest- ing a moderately lengthy period of summer diapause at this location. Ambi- ent temperatures outside of the cave during periods of observation av- eraged 29°C and inside of the cave, 21°C. Nighttime temperatures in the cave re- mains a constant 100%. Observations of wasps with and with- out prey were placed outside of the cave, in late morning (1015-1100 hours) to mid-late afternoon (1400-1500 hours) on certain days. A total of 17 wasps ex- cited the cave from 1019 to 1152 on April 4, 1992. Before exiting, females paused, cleaned their antennae, wing- flicked, remained motionless to 30 sec- onds or so, and walked or crawled away. The first female with prey entered the cave at 1206 of that day, hunting loc- iers occurred outside of the cave, most- ly between the hours of 1000 and 1200. Wasps moving into the cave from 30-60 meters from the cave entrance in order to reach their feeding sites. Except for one flight, all provisioning wasps walked or ran on the cave floor, "seldom" on the walls. Speed of transport depended upon the differential size of the wasps and their prey, the directness of the route taken and the number of obstacles encoun- tered. One provisioning female took eight minutes to walk and run 23 me- ters. During prey transport, the wasp generally kept heralinensive near the tip of the abdomen of the spider just above the avor (dorsal). She then approached the spider from the right rear and grasped it in the (normal) fashion by a telotarsus (claws) and proceeded to haul it off. Several times she stopped to rub her hind legs together or run her antennae through cleaners, never once releasing the prey. In a photograph showing prey transport, the wasp’s long, thin antennae and hind legs are angled forward and backward, respectively, possibly to obtain tactile information about the unit immediate environment. At times, two wasps traversed the cave floor "side by side" or in tandem. Mr. Page believed that this behavior was"not...totally random." As many as four wasps were simultaneously seen in one "room" of the cave. Some wasps be- came agitated when near other females. Retrieval of one wasp's abandoned epi- der by another female was observed. Provisioning wasps quickly entered "small holes" in the walls of the cave, disappearing entirely from sight. One provisioning female entered the same hold hole with successive prey and as many as two or three wasps disappeared into a single hole. Both the walls of the cave main consisted of solid rock no provisioning cells could be located. Twenty-seven spiders taken from pro- visioning wasps were all identified as A. evansii. Color photo- graphs sent to me by Mr. Page show that the spiders' legs had been ampu- tated at the coxal-tracheal joints and sometimes the pedipalps had been partly or entirely removed, often une- venly so. The prey spiders were not "free-living" inside of the cave; rather, they lived outside of the cave entrance where the wasps hunted for them in "thick vegetation." Only a "few" males were encountered inside of the en- trance to the cave and never deep in the cavern. A single male-female A. evansii interaction involved a four sec- ond-long internal "exchange" (a touch- ing) on the floor of the entrance. In Mr. Page's letter to me, he asked the following questions: (1) Why do the wasps wing-flick only outside, not inside of the cave? (2) Why do they penetrate through their prey's grasp during transport? (3) How do the wasps navigate within the dark con- fines of the cave? Do they follow a chemical trail, air movements within the cave or floor landmarks? (4) How do they pre-select their nesting sites? (5) What are the nests (cells) like and how are the immature stages protected from parasitism and predation? (6) Will fe- males accept artificial nesting tunnels? In this correspondence, Mr. Page in- cluded diagrams of (A) routes of two provisioning A. evansii (B) random exit paths of 12 females at cave entrance; and, (C) artificial nesting chamber de- sign (with dimensions).

Literature Cited

seems much less likely in view of the persistent failure to find gregarious or other structural difference.

We thank Colin Vardy for advice on Pepsis taxonomy.

References

Apparent Bird Predation on Trytonopteron Brood

by

Christopher K. Starr
St Augustine, Trinidad

The following observations are from Abraham "Brann" Willink's eugentine country house at Telf de Valle, "Uzumán" (1865m), mid-December 1993. On the outside walls of the house and out-building I found numerous disused mud nests of an unidentified Trytonopteron sp., each with up to about 30 cells. The cells lay parallel to the wall, forming a narrow comb up to three cells broad, i.e. no cell was separated from the wall by more than two cells. I saw no adult wasps or nesting activity at that time, early summer. A nest of apparently the same species in the Instituto Miguel Lillo collection is associated with wasps identified as T. fabrictor. A quick look at it suggests that it is indeed a member of the fabricator-group, but the wasp seems too small and the nest unlike that of T. fabricator.

A peculiar feature of most nests was considerable, fairly systematic damage, such that cells were opened along most of their length, exposing the cells interior. It did not have the appearance of a Nevertheless damage from weather or house-clearing. Suspecting that birds had opened the cells in search of aibrood, I looked for nests in relatively bird-protected situations and found some behind window gratings. The were not completely enclosing, so that a small, agile bird could be expected to reach the nests, but it would have required some maneuvering and would have planned the bird's situation from which it could not quickly escape.

Censusing on the two buildings, I found the following ratios of damaged undamaged nests:

- exposed surfaces 44.2%
- behind grating 5.1%

The result seems plain enough, but anyone should feel free to run a chi-sq test.

Brann tells me that he has often seen wasps on the buildings although he can not note them attacking Trytonopteron nests. The house wren, Troglodites aedon, would seem to be the best wnr.

I am unaware of other observations suggesting systematically open mud nests of any solitary wasp.

Daytime Censuses as an Estimator of Colony Size

by

Christopher K. Starr
St Augustine, Trinidad

From the researcher's point of view, an important virtue of most small-colony wasps (stingless bees and independent founding lineages) lies in the ease with which the entire colony can be observed in its open nest comb. It is customary to census colonies at night, under the reasonable assumption that then and only then are adults likely to be present. However, nighttime censuses are not always practical, which raises the question of the reliability of daytime censuses. Are there circumstances in which counts taken during daylight hours can serve as acceptable estimates of the true number of adults in the colony?

Despite the popular view of social insects as scenes of intense activity, with bees leaving and returning all day and much of the workforce away from the nest at any moment, experienced bee-watchers have long noticed that even during the active period, much of the colony much of the time is doing nothing in particular (e.g. Wheeler 1927). This tendency is quite pronounced in small-colony wasps, so that it is probably fair to say that at any given moment most adults are probably at home.

As an example, in order to collect complete colonies of Polistes olivaceus, a species and Polybia marginata during the daytime in the Mariana islands, Myano (1994) first collected all wasps present at each nest and then waited at least one hour in any returning adults, on the reasonable assumption that a forager was unlikely to be away for more than an hour. From 14 founding-stage (i.e. before emergence of the first workers) and growth-stage (i.e. with workers present but no reproductive foragers present), each with a maximum of 13 adults, he collected a total of 45 adults initially and 16 that returned later. In other words, only about 1/4 of adult females were absent from the nest at once. Furthermore, almost half of the colonies had no wasps returning during the waiting period, so that the entire colony was probably present in the cell.

This raises the possibility that the highest figures from a series of daytime censuses of a colony could be treated as an acceptable estimate of the true number of adults resident on the nest. How many censuses should it take to reach such an estimate? My purpose here is to report a very small data-set from one species, which nonetheless seems quite suggestive.

During 3-4 July 1994 in the Dominican Republic's Parque Nacional del Este, I did seven daytime and three nighttime censuses of each of 11 founding-stage colonies of Polistes cincturus on nests with up to 27 cells. All brood was quite young, apparently consisting of eggs and tail-3rd instar larvae.

A surprising result is the inconstancy between the active period and the nest was not very great. In fact, if one looks only at the first three and the last three daytime censuses, the numbers of colonies constant for all the three censuses are four and three, respectively, virtually the same as at night. Nonetheless, the average number of wasps present at night is somewhat higher than in the active period, as expected.

If numbers are inconstant even at night, should low estimates be reflected as reflecting the true number of resident adults? I will evade this question by noting that I am not concerned here with what it means to be "resident" on a nest but with the degree of similarity between daytime and
tions are very difficult, particularly in the Dryinidae, and that makes are far more conservative structurally. This fact prob-
ably makes males more valuable for genetic analyses than females. However,
the author bases his phylogenetic statements on females. Females are so
highly specialized for parastic behavior that deriving a phylogeny for the Dryin-
dae based on female characteristics may show little useful resolution. Additional-
ly, it makes no sense to do a phylo-
geneic analysis of species found in such a small, biogeographically unmarka-
ble region. The species found here un-
doubtedly have sister species in other, not necessarily adjacent regions, not
just in the area of Denmark and Fin-
noscandia. The cladogram on page 32 is a classic of its kind.
However, overall the book is a thor-
ough, and valuable work. It is clearly
and concisely written, and contains one of
the most detailed treatments of the biology and morphology of these fami-
lies ever published. It certainly contains
the most beautiful illustrations of these wasps I’ve ever seen.

Lynn S. Klumsey
Department of Entomology
University of California
Davis, CA 95616

ALLOTYPES

For some years now, I have been
serving as a review editor. This has
ex-
posed me to the wriggles of authors
from all over the world. I have been
amazed by the fact that some taxono-
mists have no real appreciation of the
term allole. For example, some writ-
ers will describe and designate the allo-
types of a previously described species! Such action is simply improper. Why?
The explanation is simple. When an au-
thor describes a new species, a homo-
type is designated, and any other type specimens cited in the original descrip-
tion are paratypes. Some authors des-
ignate one paratype as an “allole” to
indicate that it is the opposite sex of the holotype. But that does not change the
fact that it is still a paratype. If an au-
thor describes a new species from only
one sex, then anyone that subsequent-
ly finds the previously unknown opo-
site sex can describe it. But it is im-
proper to identify one specimen as the
“allole”. Type material (holotype and
paratypes (and allole) can only be
designated in the original description.
Subsequent descriptions of an unknown
sex are simply that.

Arnold Menke

DERIVATION OF
SCIENTIFIC NAMES

Providing the derivation of the names of new species is something that au-
thors occasionally omit in their original descriptions. The consequences of this
can sometimes be disconcerting, and in the case of patronymy, downright
dishonorable. Occasionally a species name is published with a spelling differ-
ent from that intended by the author. This happens because an author may
miss a typing error during reading of proofs, or he or she may, in some
cases, not even see proofs. Under the provisions of the Code of the Interna-
tional Commission on Zoological No-
menclature, specifically Article 32, the original spelling of a name cannot be
enforced unless there is clear evidence in the original description of the intend-
ed spelling. I offer two examples that il-
lustrate this point.
I described a new species of Ammophila from Utah (Menke 1966) and
called it Uinta, after the Uinta Indi-
ans of that region. The printer spelled
the name Uinta throughout the descrip-
tion, and I did not see the error during
proof reading. Unfortunately, I did not
give the derivation of the name, so
there was no evidence in the original
description itself that would permit me
to emend the name to Uinta, my intend-
ed spelling. Thus the species will fore-
er be Uinta.
The North American hymenopterist, S. A. Rohwer, described (1910) a new
species of Parapredox (the actually used the generic name Calepithorax), and the
published spelling was grammatical. Roh-
wer did not write in his description that
he was “indicating the species to the
American lepidopterist, Fordyce Grinnell,
ji, although the specimen on which the
description was based was collect-
ed by him and apparently “grinnelli”
was the intended spelling. The Code is
very clear here (see Art. 32(o)(i) and
examples). Unless there is explicit evi-
dence in the original description of the
intended spelling, the name must stand
as printed. Since Rohwer did not say
that he was naming the species after
Grinnell, the species must forever be
called grammatical.

These two examples clearly dem-
strate the desirability of providing the der-
ivation of any new species name. This
is especially true for species named af-
ter people. If you think highly enough of
someone to name a species after them, you
should tell the world that you are
naming the species in honor of “John”
or “Jane Doe”. Otherwise the honor is
lost, and you have no recourse if some-
how the name is misspelled when pub-
lished.

Arnold Menke

ABE MAKES
COMMERCIAL NEWS

[Abstracted by Robin Edwards from an

A Nikka staff writer reports on Takes-
ishi Abe's creation of a sports drink con-
taining some of the compounds found in
the saliva of hornet larvae. Abe, of the
Institute of Physical and Clinical
Research in Japan, figured that this sa-
liva must be responsible for the amaz-
ing power that enables adult hornets to
beat their wings more than a thousand
times a minute, and to fly over 100km a
day. His analysis of the saliva showed
it contained large quantities of the ami-
onoids, glycine and proline.

Abe's concoction has been tried by
marathon runners, rugby and ice hock-
ey players, and all have reported im-
proved results if they drink the "polish-
ning" before play begins. The actual contents of the drink are not reported!
IVth INTERNATIONAL COLLOQUIUM ON SOCIAL INSECTS

First Announcement

The Russian Language Section of the International Union for the Study of Social Insects announces its IVth International Colloquium which will be held in St. Petersburg (Russia) from Friday 16 till Thursday 22 August 1996. The Colloquium will cover all aspects of behaviour, ecology and physiology of social and presocial arthropods and will be international with a broad participation of colleagues from other IUSSI sections and other scientists from abroad.

The official languages of the Colloquium will be English and Russian. The scientific meetings are scheduled for four full days, the other two days being devoted to excursions all over St. Petersburg, its beautiful palaces, museums and environs. An additional excursion tour could be organized for two days after the Colloquium closure.

Papers presented to Colloquium (up to 25 typewritten pages in English or in Russian) will be published in the IV volume of the Proceedings of the Colloquia on Social Insects. The authors will receive 50 reprints of each article without charge.

We would be happy to see all our foreign colleagues among the participants of the IVth International Colloquium on Social Insects in St. Petersburg.

If you intend to participate, please, send us a short application (see below). We will send out the second announcement at the beginning of 1996.

Communication:

Dr. Vladilen E. Kipyatkov, President of the IUSSI Russian Language Section, Department of Entomology, Faculty of Biology, St. Petersburg State University, 7/9 Universitetskaya naberezhnaya, St. Petersburg 199034, RUSSIA
Tel.: (+7) 812 218-96-79; Fax: (+7) 812 218-08-52, 218-13-46; E-mail: vkek@socium.spb.su

cut here →

Name...
Address..
..
..
..
Fax: E-mail:...
I wish to submit: a paper a poster
Preliminary title of a talk/poster...
..
..